
Draft version February 27, 2024

Typeset using LATEX preprint style in AASTeX631

Unveiling the Initiation Route of Coronal Mass Ejections through their Slow Rise
Phase

Chen Xing,1, 2 Guillaume Aulanier,2, 3 Xin Cheng,1 Chun Xia,4 and Mingde Ding1

1School of Astronomy and Space Science, Nanjing University, Nanjing, China
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ABSTRACT

Understanding the early evolution of coronal mass ejections (CMEs), in particular
their initiation, is the key to forecasting solar eruptions and induced disastrous space
weather. Although many initiation mechanisms have been proposed, a full understand-
ing of CME initiation, which is identified as a slow rise of CME progenitors in kine-
matics before the impulsive acceleration, remains elusive. Here, with a state-of-the-art
thermal-magnetohydrodynamics simulation, we determine a complete CME initiation
route in which multiple mainstream mechanisms occur in sequence yet are tightly cou-
pled. The slow rise is first triggered and driven by the developing hyperbolic flux tube
(HFT) reconnection. Subsequently, the slow rise continues as driven by the coupling of
the HFT reconnection and the early development of torus instability. The end of the
slow rise, i.e., the onset of the impulsive acceleration, is induced by the start of the fast
magnetic reconnection coupled with the torus instability. These results unveil that the
CME initiation is a complicated process involving multiple physical mechanisms, thus
being hardly resolved by a single initiation mechanism.

Keywords: Sun: corona, Sun: coronal mass ejections (CMEs), Sun: flares

1. INTRODUCTION

The Sun frequently produces violent plasma eruptions such as coronal mass ejections (CMEs), which
are released into the interplanetary space and induce geomagnetic storms (Gosling 1993) and damage
aerospace equipment, satellite communications and power grids (Elovaara 2007) when colliding with
the Earth’s magnetosphere. The forecast of CMEs is thus extremely important for preventing space
disasters and exploring habitable exoplanets (Khodachenko et al. 2007).
The evolution characteristics of CMEs and their pre-eruptive structures (e.g. sigmoids and filaments

(Cheng et al. 2017); hereafter named as CME progenitors (Chen 2011)) in kinematics at various stages
lay the foundation for CME predictions. For hours to days before the eruption, CME progenitors
are stable and evolve quasi-statically, rising with a small velocity (< 1 km s−1) and tiny acceleration
(Xing et al. 2018). In contrast, during the fast eruption, CMEs show an impulsive increase in velocity
(up to hundreds to thousands of km s−1) and acceleration (up to hundreds of m s−2) in a short time
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2 Xing et al.

(tens to hundreds of minutes) (Zhang & Dere 2006). These two stages of kinematics are named as the
quasi-static phase and the impulsive acceleration phase, respectively (Zhang et al. 2001; Zhang & Dere
2006; Xing et al. 2018). The understanding of the kinematics during these two phases is relatively
thorough, where the former is believed to be a response to the photospheric motion considering their
similar characteristic speeds (Yang et al. 2004; Kaithakkal & Solanki 2019) and the latter is driven
by the coupling of magnetohydrodynamics (MHD) instabilities (Kliem & Török 2006; Aulanier 2014;
Green et al. 2018; Aulanier 2021) and fast magnetic reconnection (Lin & Forbes 2000; Zhang & Dere
2006; Jiang et al. 2021).
The initiation of CMEs refers to the transition between the quasi-static state of CME progenitors

and the impulsively eruptive state of CMEs. In theoretical works, it usually corresponds to a turning
point at the start of the impulsive acceleration phase, on the premise that the evolution of CME
progenitors and CMEs is composed of the two phases mentioned above. Such a CME initiation is
mainly explained by three mainstream mechanisms which are able to break the stable equilibria of
CME progenitors (that is, to trigger the CME eruption) (Aulanier 2014, 2021), i.e., (1) the torus
instability (Kliem & Török 2006; Zuccarello et al. 2015) which refers to a pre-eruptive flux rope
losing its equilibrium when the background constraint field decreases rapidly enough with increasing
altitude, (2) the breakout reconnection (Antiochos et al. 1999; Masson et al. 2019) in which the
external reconnection at a null point above the pre-eruptive structure removes the constraint of the
overlying field, and (3) the tether-cutting reconnection (Moore et al. 2001; Jiang et al. 2021) in which
the CME is caused by the fast reconnection with outflow jets.
However, some observational works demonstrate that CME progenitors actually always leave their

quasi-static phase and experience a slow rise phase in a few to tens of minutes prior to the impulsive
acceleration phase (Kahler et al. 1988; Zhang et al. 2001; Cheng et al. 2020; Prasad et al. 2023),
specifically, manifesting as slowly rising with an increasing velocity (tens of km s−1) and a moderate
acceleration (tens of m s−2) in this period (Cheng et al. 2020). Meanwhile, there is always a weak soft
X-ray enhancement as the precursor of the main flare (Simnett & Harrison 1985; Zhang et al. 2001)
and the CME progenitors often appear as high-temperature structures (known as hot channels) in
extreme ultraviolet (EUV) bands (Cheng et al. 2012; Zhang et al. 2012). These observations indicate
that the CME initiation, as the transition between the quasi-static state of CME progenitors and the
impulsively eruptive state of CMEs, is actually a process before the impulsive acceleration phase, in
which various precursors including the slow rise occur.
Different conjectures have been proposed in observations to understand the CME initiation as a

process. On the one hand, it is argued that the eruption-trigger mechanism (e.g., torus instability,
breakout reconnection, and tether-cutting reconnection) occurs at the start of the initiation process
and drives the slow rise during the initiation (Zhang et al. 2001; Zhang & Dere 2006), considering
the necessary early development of the eruption-trigger mechanism before inducing significant ac-
celeration of CMEs (e.g., Schrijver et al. 2008). On the other hand, it is suggested that the CME
initiation is related to the weak magnetic reconnection prior to the onset of eruption-trigger mech-
anisms, as the magnetic reconnection builds up the CME progenitor and reduces the overlying field
restraining it (Sterling et al. 2007; Savcheva et al. 2012; Cheng et al. 2020; also see the review by
Green et al. 2018). Specifically, Cheng et al. (2023) shown that the slow rise and the heating of
CME progenitors are caused by a moderate precursor reconnection above the top of pre-flare loops.
However, it is obvious that these two types of interpretations are disjointed, indicating that the
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initiation of a CME event is likely more complex than those described in above-mentioned conjec-
tures and thus any single mechanism may only reveal a part of nature of the CME initiation. To
determine a complete understanding of the CME initiation and to reveal how different physics are
coupled with each other, we here perform a state-of-the-art three-dimensional (3D) observationally-
inspired thermal-MHD simulation. The comprehensive analyses disclose a complete CME initiation
that involves multiple physical mechanisms and even a coupling between two mechanisms.

2. 3D OBSERVATIONALLY-INSPIRED THERMAL-MHD SIMULATION OF CME

2.1. Equations

In this work, we study the CME initiation by performing a 3D observationally-inspired thermal-
MHD simulation labeled as “Simulation Driven-eruption” (abbreviated as “Simulation De”) with the
code MPI-AMRVAC (Xia et al. 2018), which solves the following equations in Cartesian coordinates:

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂(ρv)

∂t
+∇ · [ρvv + (p+

B2

2µ0

)I − BB

µ0

] = ρg + 2µ∇ · [S − 1

3
(∇ · v)I] (2)

∂B

∂t
+∇ · (vB −Bv + ψI) = −∇× (ηJ) (3)

∂eint
∂t

+∇ · (eintv) = −p∇ · v + 2µ[S : S − 1

3
(∇ · v)2] + ηJ2 +∇ · [κ||(b · ∇T )b] (4)

∇×B = µ0J (5)

∂ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
ψ, (6)

where ρ, p, T , eint, v,B, J represent the mass density, thermal pressure, temperature, internal energy,
velocity, magnetic field and current density, respectively. g = −gez is the gravity acceleration. µ is
the dynamic viscosity coefficient and set to 10−4 (in dimensionless unit) throughout the simulation,
S is the strain tensor where Sij = (1/2)(∂ivj + ∂jvi), and I is the unit tensor. η is the resistivity
coefficient whose value is set differently in different phases. κ|| = 8 × 10−7T 5/2 erg cm−1 s−1 K−1 is
the parallel conductivity coefficient, and b = B/B is the normalized magnetic field. We introduce
a generalized Lagrange multiplier ψ to maintain the ∇ ·B = 0 condition (i.e., generalized Lagrange
multiplier (GLM) method; Dedner et al. 2002). The evolution of ψ follows Equation 6 and ch and cp
are constants. As a thermal-MHD simulation, we consider compression heating, viscous dissipation,
Ohmic dissipation, and thermal conduction in the energy equation. Especially, we solve the internal
energy equation instead of total energy equation to avoid the heating from the numerical resistivity
and numerical viscosity.

2.2. Numerical Methods

The equations are solved with the HLL scheme, the third-step Runge-Kutta time discretization
method, and the fifth-order mp5-limited reconstruction (Suresh & Huynh 1997). We also use the
magnetic field splitting method (Tanaka 1994; Xia et al. 2018) in this simulation: the magnetic field
B is split into two parts, the invariable background field B0 and the deviation B1. In this simulation,
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B0 is set as the initial magnetic field, and thus the initial B1 is 0. This method is conducive to
eliminating numerical errors related to the divergence of magnetic field and achieving more precise
results, especially in regions where the magnetic field evolves with minor change from the initial value,
although it is relatively less effective in regions where the change of magnetic field is considerable
(e.g., the centers of polarities during the converging phase).
The equations are solved in the dimensionless form, with the magnetic permeability equal to 1. The

atmosphere is set to a fully ionized ideal gas with a hydrogen-helium abundance ratio of 10:1 (Xia et
al. 2012). The dimensionless unit of the length, time, mass density, thermal pressure, temperature,
velocity and magnetic field strength is 10 Mm, 67.89 s, 2.34× 10−15 g cm−3, 0.51 erg cm−3, 1.6 MK,
147.30 km s−1 and 2.53 G, respectively.
The physical domain of the simulation is in the range of −7 ≤ x ≤ 7, −7 ≤ y ≤ 7, and 0 ≤ z ≤ 14

(in dimensionless unit). We set a stretched grid (nx×ny×nz = 144×144×96), which is symmetric
stretched in x and y directions with stretched ratio of 1.029, and unidirectional stretched in z direction
with stretched ratio of 1.028. The spatial resolution in three directions is in the range of 0.0297≤ dx ≤
0.2262, 0.0297 ≤ dy ≤ 0.2262, and 0.0298 ≤ dz ≤ 0.4103 (in dimensionless unit). In dimensional unit,
the finest resolutions in three directions are about 300 km, comparable to those of Solar Dynamics
Observatory/Atmospheric Imaging Assembly (AIA; Lemen et al. 2012). This spatial resolution is
lower than those in other simulations of CME eruptions (Aulanier et al. 2010; Jiang et al. 2021),
but it is a compromise for the sake of saving computation resources for solving the thermal-MHD
equations.

2.3. Initial Conditions

The initial magnetic field (similar to that in OHM; Aulanier et al. 2010) is composed of two
potential bipolar fields:

Bx(t = 0) = Σ4
m=1cm(x− xm)r

−3
m

By(t = 0) = Σ4
m=1cm(y − ym)r

−3
m

Bz(t = 0) = Σ4
m=1cm(z − zm)r

−3
m

rm =
√

(x− xm)2 + (y − ym)2 + (z − zm)2,

(7)

where (c1 = 60, x1 = 0.9, y1 = 0.3, z1 = −1.1), (c2 = −60, x2 = −0.9, y2 = −0.3, z2 = −1.1),
(c3 = 45, x3 = 9, y3 = 3, z3 = −11), and (c4 = −45, x4 = −9, y4 = −3, z4 = −11) in dimensionless
unit. The first (last) two monopoles are close to (far from) each other and locate shallow (deep),
producing a strong (weak) potential field that decays rapidly (slowly) with altitude within the physical
domain. The first potential field mimics the background field in an active region while the second one
mimics the background field of the Sun on a global scale. The second potential field is set to ensure
that the Alfvén speed at the upper part of the domain is large enough and thus to avoid shocks
caused by the driving motion. The maximum dimensionless field strength in the plane z = 0 (which
is named as box bottom surface in the following) is about 45. Such a strength is smaller than that in
active regions in observations, while this is also a compromise for saving computation resources.
The initial atmosphere is set to a hydrostatic corona with a uniform dimensionless temperature of

1. The box bottom surface corresponds to 3 Mm above the solar surface, and the initial dimensionless
mass density at the box bottom surface is set to 1. The initial distribution of thermal pressure and
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mass density with altitude follows:

∇p = ρg

p = ρT

g = g0
R2

sun

(Rsun + 0.3 + z)2
,

(8)

where Rsun = 69.55 is the dimensionless solar radius and g0 = −0.126 is the dimensionless gravity
acceleration at the solar surface. With such an initial atmosphere, the plasma β along the vertical
slit through the origin is less than 1 in the region z < 3.7 (in dimensionless unit) at t = 0. While,
as the magnetic field evolves, the plasma β further decreases: the plasma β along the vertical slit
through the origin is less than 1 in the region z < 4.8 at t = 18, in the region z < 6.0 at t = 58, and
in the region z < 7.5 at t = 68, which ensures that the modelled CME (progenitor) is always located
in a low plasma β region which mimics the corona.
The initial velocity is set to zero and the parameter ψ is also set to zero in the whole physical

domain.

2.4. Driving Motions and Line-tied Conditions

In this work, we impose line-tied motions on the bottom boundary to drive the magnetic field
and set special bottom boundary conditions to ensure the line-tied condition. Here, the line-tied
condition means that the footpoint of the field line can only move horizontally according to the
prescribed motion in the case of ideal MHD (Aulanier et al. 2005).
Inspired by the characteristics of the photospheric magnetic field evolution in observations (Yang

et al. 2004; Green & Kliem 2009; Schrijver et al. 2011), two driving motions are considered in this
simulation: a shearing motion that drives the initial potential field to a highly sheared state, and a
converging motion that facilitates the flux cancellation near the polarity inversion line (PIL). The
“Simulation De” is composed of two phases: the shearing phase (0 ≤ t ≤ 18) with only shearing
motion applied and the converging phase (18 < t ≤ 68) with only converging motion applied. Such a
setup differs from that in the previous work (Zuccarello et al. 2015), as here the converging motion is
never switched off. We note that imposing only one type of motion at each phase makes the simulation
easier to control and analyze: the shearing phase can be understood as a preparatory stage of the
simulation to create a sheared magnetic field for the converging phase, during the latter of which we
analyze the formation and eruption of the flux rope; while the converging phase is designed to fulfill
the flux cancellation model.
The motions are imposed at the cell-center bottom surface which is a horizontal surface at the

altitude of the cell center of the first layer of the physical domain (cell layers in physical domain
indexed by k = 1, 2, 3, ..., 96 from the bottom to the top) at each time step to directly control the
evolution of the magnetic field in the layer k = 1. For “Simulation De”, we set:
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the shearing motion (vsx, v
s
y, v

s
z):

vsx(k = 1; t) = γ(t)V s
x (t)

vsy(k = 1; t) = γ(t)V s
y (t)

vsz(k = 1; t) = 0

V s
x (t) = vmax

0 Ψ0(t)∂yΨ(t)

V s
y (t) = −vmax

0 Ψ0(t)∂xΨ(t)

γ(t) =


1

2
tanh[3.75(t− 1)] +

1

2
0 ≤ t < 16

−1

2
tanh[3.75(t− 17)] +

1

2
16 ≤ t ≤ 18,

(9)

and the converging motion (vcx, v
c
y, v

c
z):

vcx(k = 1; t) = γ(t)V c
x (t)

vcy(k = 1; t) = γ(t)V c
y (t)

vcz(k = 1; t) = 0

V c
x (t) = vmax

0 Ψ0(t)∂xΨ(t)

V c
y (t) = vmax

0 Ψ0(t)∂yΨ(t)

γ(t) =
1

2
tanh[3.75(t− 19)] +

1

2
18 < t ≤ 68,

(10)

where

Ψ(t) = exp[−Ψ1(
Bz(k = 1; t)

Bmax
z (k = 1; t)

)2], (11)

and Ψ1 = 5.5 for the shearing motion and Ψ1 = 27.5 for the converging motion. The maximum
speed of the driving motion vmax

0 is set to 0.16 (in dimensionless unit) for both the shearing and
the converging motions. The function Ψ0(t) is used to keep the maximum of the term

√
V 2
x + V 2

y

always vmax
0 . As shown in Fig. 1, the shearing motion is along the tangent direction of the contour

of Bz(k = 1), while the converging motion is perpendicular to that tangent direction. Near the PIL,
the shearing motion is antiparallel on two sides of the PIL, while the converging motion is towards
the PIL.
It should be noted that the maximum speed of the driving motions is set to roughly 20 times of

that in observations to speed up the simulation. While, it is still acceptable as it is less than the
Alfvén speed and the sound speed in the core-area affected by the driving motion: at t = 0, in the
domain that −4.20 ≤ x ≤ 4.20, −4.20 ≤ y ≤ 4.20, and 0 ≤ z ≤ 8.36 (in dimensionless unit), the
ratio of vmax

0 to the average Alfvén speed is 0.101 and the ratio of vmax
0 to the maximum Alfvén speed

is 0.004; the ratio of vmax
0 to the sound speed is constant of 0.124 in this domain.

Several settings are adopted to achieve the line-tied condition at the cell-center bottom surface.
First, the GLM parameter ψ is fixed to zero in the layer k = 1, and we set a symmetric boundary
condition centered at the cell-center bottom surface for ψ (see Section 2.5 for more details), so all
components of the term ∇· (ψI) is zero in the layer k = 1. Second, for “Simulation De”, in the layer
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k = 1, the dissipation term in the Equation 3 is modified into:

∂B

∂t
+∇ · (vB −Bv + ψI) =


0 0 ≤ t ≤ 18

η(
∂2

∂x2
+

∂2

∂y2
)B 18 < t ≤ 68.

(12)

During the shearing phase of “Simulation De” (0 ≤ t ≤ 18), the dissipation term in this layer equals
zero so that it has no effect on the magnetic field. The resistivity η is fixed to zero in the layer
k = 1 and set to be uniform (η = 10−4; in dimensionless unit) in the whole region (including both
the physical domain and the ghost cell layers) except the layer k = 1 during the shearing phase.
However, during the converging phase of “Simulation De” (18 < t ≤ 68), we adopt a two-dimensional
(2D) dissipation term (Aulanier et al. 2010) in the layer k = 1 to allow the flux cancellation close to
the PIL. A larger, uniform resistivity (η = 4× 10−4; in dimensionless unit), which facilitates the flux
cancellation, is set in the whole region including the layer k = 1.
In addition, the shearing motion in Equation 9 satisfies that the z-component of the term ∇·(vB−

Bv) is zero, so analytically Bz in the cell-center bottom surface should remain invariable during the
shearing phase. To achieve this feature more accurately, we enforce that Bz remains invariable in the
layer k = 1 during this phase.

2.5. Boundary Conditions

The mp5-limited reconstruction method uses three ghost cell layers at each boundary. The mesh
in the ghost cell layer is also stretched in the same way as that in the physical domain. In all
ghost cell layers, the background magnetic field B0 remains invariable; the two components of the
magnetic field B1 which are parallel to the boundary surface are derived by one-sided third-order
equal-gradient extrapolation, and the component of B1 which is normal to the boundary surface is
derived under the constraint of the ∇ ·B = 0 condition. Such a setting will keep the divergence of
the magnetic field zero in the layer k = 1, so it is reasonable to set ψ to zero in this layer.
We assume that at each time step, the atmosphere in both the bottom ghost cell layer and the layer

k = 1 is hydrostatic. Thus, the thermal pressure in the bottom ghost cell layer can be derived with
centered difference. We further assume that the dimensionless temperature in the ghost cell layer
is constant of 1, same as the initial temperature, and then the mass density is derived by the ideal
gas law. The thermal pressure and the mass density in the top ghost cell layers are derived with the
same method. In the four side ghost cell layers, the thermal pressure and the mass density are fixed
to their initial values.
The velocity in the bottom ghost cell layer k = n (layer indexed by k = −1,−2,−3 from the top

to the bottom of the bottom ghost cells) is derived from the velocity in the layer k = 1 and that
in the layer k = 1 − n by the linear extrapolation. This boundary condition is the same as the
antisymmetric boundary condition for vz and the pseudo antisymmetric boundary condition for vx
and vy at the bottom boundary in the previous work (Aulanier et al. 2005). The velocity in top ghost
cell layers is derived by the one-sided second-order zero-gradient extrapolation, and the z-component
is forced to be no less than zero to avoid possible downward flows. The velocity in the side ghost cell
layers is set by the antisymmetric boundary condition centered on the side surface of the box.
To achieve the goal of removing the contribution of ∂zψ in the layer k = 1, a symmetric bottom

boundary condition for ψ is set centered on the cell center of this layer. The aim is fulfilled more
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precisely by replicating the flux of ψ from the top surface of the layer k = 1 to its bottom surface
(box bottom surface). In the top and the side ghost cell layers, ψ is fixed to zero.

2.6. Overview of Modelled CME Event

The evolution of the modelled CME progenitor and CME in “Simulation De” is shown in Fig. 2.
During the shearing phase (0 ≤ t ≤ 18), the initial potential field is driven to a highly sheared state
under the shearing motion (Fig. 2b). After that, during the converging phase (18 < t ≤ 68), a
pre-eruptive flux rope composed of twisted field lines is first formed by magnetic reconnection under
the converging motion, and then it erupts as a CME (Fig. 2b). The pre-eruptive flux rope is hot and
visible in synthetic EUV images mimicking AIA 335 Å observations (Fig. 2a and Fig. 10).
The initial magnetic topology of the reconnection region is a bald patch (BP; Titov et al. 1993;

during 20 ≤ t ≤ 45), characterized by (B · ∇)Bz > 0 where Bz = 0. As shown by the quasi-
separatrix layers (QSLs; Priest & Démoulin 1995), such a BP topology later gradually bifurcates into
a hyperbolic flux tube (HFT; Titov et al. 2002; since t = 46; see Fig. 5 and Fig. 8f). An obvious
difference between the BP reconnection and the HFT reconnection is that the former forms flux rope
field lines tangent to the bottom surface at their dips (Fig. 3a), while the latter forms flux rope field
lines whose dipped parts are detached from the bottom surface and low-lying loops (Fig. 3b).

3. KINEMATICS OF CME PROGENITOR AND CME

The kinematics of CME progenitor and CME in “Simulation De” is estimated by measuring the
height of the apex of an overlying field line right above the flux rope. Such an estimation method in
simulations is consistent with the estimation method in observations where the kinematics of the hot
channel is measured at its leading edge. The overlying field line is selected as one traced from a same
fixed point at the center of the positive polarity and on the cell-center bottom surface. The velocity
at this fixed point is extremely small, very close to or equal to zero, in all phases of “Simulation
De”, which ensures that the footpoint of this field line hardly moves and its height evolution can well
reflect that of the CME (progenitor).
The kinematic of CME progenitor and CME, as shown in Fig. 4, is composed of three phases

which are comparable to the three phases in observations, even though the simulation is merely
designed for CME progenitor formation and CME eruption and certainly not to fit the kinematics
a priori. The CME progenitor first rises quasi-statically with a tiny and fluctuating acceleration
(during 35 ≤ t < 52; Fig. 4f), consistent with the behavior in the quasi-static phase in observations
(Xing et al. 2018). As a result, the velocity-time curve is in a quasi-linear form in this phase
(Fig. 4e). We note that the decaying fluctuation of the acceleration may reflect the process of the
CME progenitor gradually approaching the quasi-equilibrium state under the driving motion. Later
(during 52 ≤ t ≤ 65), the acceleration of the flux rope continuously increases to tens of m s−2 (Fig.
4f) and thus its velocity increases quickly (Fig. 4e). This phase corresponds to the slow rise phase in
observations and thus marks the initiation process of the modelled CME, as this phase is just before
the impulsive acceleration of the CME and the evolution of acceleration in it is significantly different
from those in phases both before and after it. Even, the acceleration in this phase is comparable to
that in the slow rise phase in observations (also tens of m s−2; Cheng et al. 2020). The last phase
(65 < t ≤ 68) is considered to correspond to the impulsive acceleration phase in observations, as the
modelled CME acceleration impulsively rises to hundreds of m s−2 in this period (Fig. 4c).
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The eruption of CME is most likely triggered by the torus instability (TI), which occurs in the later
stage of the slow rise phase (at a moment during 59 ≤ t < 63; see the analysis of torus instability in
Appendix A). Other potential eruption-trigger mechanisms are ruled out: (1) The HFT reconnection
can not trigger the eruption as the flux rope fails to erupt in the presence of the HFT in the control
simulation “Simulation Ne” (see Appendix A). (2) The long and thin current sheet, which is usually
necessary for the fast magnetic reconnection (Jiang et al. 2021), does not show up before t = 65 in
this simulation. Therefore, the fast magnetic reconnection, even if it sets in this simulation, occurs
later than the onset of the torus instability and does not play a key role in triggering the eruption.
Lastly, it should be noted that the behavior of the acceleration of the CME progenitor is less

affected by the absolute speed of the driving motion during the quasi-static phase in this simulation.
The reason is that the rising of the CME progenitor is a response to the driving motion in this phase,
while the maximum speed of driving motions is a constant. Therefore, even if the absolute speed of
the driving motion is large, the acceleration of the CME progenitor, as the first order derivative of
the velocity with respect to time, is still almost close to 0. Therefore, the quasi-static phase in our
simulation can be compared to that in observations.

4. MECHANISMS OF KINEMATICS

4.1. Triggering Mechanism of Slow Rise Phase

The transition from the quasi-static phase to the slow rise phase occurs (at t = 52) just after
the first appearance of HFT (at t = 46). This indicates that the HFT reconnection is likely the
mechanism triggering the slow rise phase.
This speculation is supported by detailed analyses on the relation between the reconnection and

the kinematics. Fig. 5a,f reveal that the upward outflow of the reconnection is very slow at the
stage of BP (e.g., t = 45) and the early stage of HFT (46 ≤ t < 52), but it is markedly accelerated
as the HFT is rapidly built up (e.g., from t = 52 to t = 58). Quantitatively, the growth rate of
the reconnection upward outflow velocity is temporally consistent with the acceleration of the CME
progenitor, and both of them start to increase shortly after the first appearance of HFT (Fig. 5g).
We consider that the velocity of the reconnection upward outflow reflects the ability of reconnection
to contribute to the flux rope. Therefore, the above results indicate that the slow rise is triggered
when the contribution from reconnection starts to quickly increase after the HFT forms. In other
words, the slow rise is triggered by the HFT reconnection. We eliminate the possibility that the torus
instability triggers the slow rise, since the failed eruption in the “Simulation Ne” implies that the
torus instability, as the triggering mechanism of the eruption, does not occur before t = 58 in the
“Simulation De” (see Appendix A).

4.2. Driving Mechanisms of Slow Rise Phase

We further investigate the mechanisms driving the slow rise of the flux rope. Considering that the
torus instability occurs during the slow rise phase, we divide the slow rise phase into two stages, i.e.,
the earlier stage (52 ≤ t ≤ 58) and the later stage (59 ≤ t ≤ 65), and analyze the driving mechanisms
in these two stages separately.
For the earlier stage, the motion of the flux rope is controlled by a net upward force on its lower

part and a net downward force on its upper part (see Fig. 6b, for an example at t = 58). The Lorentz
force and the thermal pressure gradient force are the major contributors to the net force, while the
gravity and the viscous force are of little importance (Fig. 6). Especially, the maxima of the Lorentz
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force, the net force, and the velocity in the flux rope region are all concentrated near the HFT (Fig.
6a,b) during this stage. This implies that it is the HFT reconnection that powers the flux rope rise
in the earlier stage of the slow rise phase. In addition, the synchronized evolutions of the flux rope
acceleration and the growth rate of the reconnection upward outflow velocity in Fig. 5g also indicate
that the slow rise is driven by the HFT reconnection during the earlier stage.
The HFT reconnection drives the slow rise in the earlier stage, on the one hand, by adding twisted

concave-upward field lines to the lower part of the flux rope (Fig. S3). These field lines provide
magnetic tension to the flux rope (Fig. 6a; known as the slingshot effect), enhance the force imbalance
in the flux rope, and finally accelerate the flux rope. On the other hand, the reconnection upward
outflow in the HFT is convected upwardly into the flux rope (Fig. 5a,e), and thus it can directly
promote the flux rope rise. Specifically, the plasma in the reconnection upward outflow is accelerated
by a net upward force which is dominated by the Lorentz force and the thermal pressure gradient
force (Fig. 5). The upward Lorentz force consists of magnetic tension force mainly at the HFT top
and magnetic pressure gradient force mainly at the HFT center (Fig. 7), the former of which is
provided by the newly formed concave-upward field lines and the latter of which is associated to the
accumulation of the sheared/guide component of the magnetic field. The upward thermal pressure
gradient force is due to an increase in the gas pressure at the flanks of the flux rope bottom, which
is a result of the density pileup pinched by the reconnection inflow (Fig. 7).
Furthermore, since the HFT appears, the two footprints of the HFT continuously separate from

each other in the direction perpendicular to the PIL, and meanwhile they extend in the direction
parallel to the PIL to both sides until they are completely separated (Fig. 8a-c; shown by the QSL
footprint, which manifests as the flare ribbon in observations during the eruption (Zhao et al. 2016),
but probably invisible before the eruption due to the weak reconnection rate). The reconnection
electric field within the HFT, which represents the reconnection rate (Forbes & Priest 1984), also
shows a gradually increasing trend since t = 46 and until t = 59 (Fig. 8h; also see Appendix C
for more details). These results strongly suggest that the HFT and its associated reconnection are
gradually built up during the earlier stage of the slow rise phase. Both the slingshot effect and the
outflow effect of the HFT reconnection thus become stronger, which leads to the continuous increase
of acceleration of the CME progenitor in this stage.
For the later stage of the slow rise phase, we argue that the HFT reconnection still has a considerable

contribution to the rising motion, since the HFT reconnection becomes even more stronger in this
stage, shown by the quickly increasing reconnection electric field (see that during 59 ≤ t ≤ 65 in
Fig. 8h). Moreover, the torus instability also promotes the slow rise in the later stage since it starts.
On the one hand, the hoop force could directly accelerate the flux rope (Kliem & Török 2006); on
the other hand, the torus instability could indirectly contribute to the slow rise by enhancing the
HFT reconnection, evidenced by that the HFT reconnection electric field immediately shows a quick
increase once the torus instability sets in (Fig. 8h). This enhancement may be due to that the
current structure in the HFT could become longer as the flux rope rises higher and faster with the
contribution from the torus instability, which well reflects the close coupling of torus instability and
HFT reconnection in the later stage.

4.3. Triggering and Driving Mechanisms of Impulsive Acceleration Phase

A fast magnetic reconnection likely occurs during the impulsive acceleration phase, as a thin and
long current sheet, which is usually the necessary condition for the fast magnetic reconnection, is
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formed at the start of the impulsive acceleration phase (t ∼ 66) and soon built up since then (Fig.
9). The other evidence for the fast magnetic reconnection is the impulsively increasing reconnection
electric field in the reconnection region during the impulsive acceleration phase (Fig. 8g). Therefore,
we consider that the impulsive acceleration phase (65 < t ≤ 68) is likely triggered as the magnetic
reconnection coupled to the torus instability transforms from the relatively weaker HFT reconnection
to the relatively stronger fast magnetic reconnection, and that the phase is continuously driven by the
close coupling of the fast magnetic reconnection and the torus instability which induces an impulsive
acceleration.

5. HEATING OF CME PROGENITOR

Benefitting from the thermal-MHD simulation, we also study the thermal properties of the CME
progenitor. The modelled CME progenitor is significantly heated and visible in EUV synthetic images
at the AIA 335 Å (Fig. 2a and Fig. 10; see Appendix D for more details). It is channel-like in the
face-on view, elliptical in the edge-on view, and sigmoidal in the top view. It is very similar to pre-
eruptive hot channels discovered in observations (Zhang et al. 2012; Patsourakos et al. 2013; Cheng
et al. 2014), except that our modelled one is somewhat less hot than those in observations due to the
weak magnetic field adopted in our simulation. The temperature of the modelled CME progenitor
is expected to increase with a stronger magnetic field, as the former is roughly proportion to the
square of the later. Regardless of the specific temperature, the modelled bright structure basically
corresponds to the pre-eruptive flux rope (Fig. 10), which supports the view that the hot channel
represents the hot flux rope in observations (Zhang et al. 2012).
In addition, taking the snapshot at t = 58 as an example, an analysis of the heating sources reveals

that the CME progenitor is mainly heated by the Ohmic dissipation (Fig. 11). Especially, one can
find that at the bottom and side boundaries of the flux rope, the Ohmic dissipation is relatively
stronger and its profile is highly consistent with that of the HFT and the QSLs (Fig. 11). This
result indicates that the magnetic reconnection in the HFT and the QSLs surrounding the flux
rope effectively heats the local plasma while it forms the pre-eruptive flux rope, which confirms the
conjecture in the previous 3D CME model (Janvier et al. 2014). In addition, the bulk heating within
the flux rope results from the setup of a uniform resistivity in the simulation domain.

6. SUMMARY: A COMPLETE ROUTE OF CME INITIATION

Based on our simulation, we present a complete route of the CME initiation as summarized in Fig.
12. In short, during the CME initiation, the slow rise motion is first triggered and driven by the HFT
reconnection and later driven by an early coupling of the HFT reconnection and the torus instability.
In detail, the kinematic evolution around the CME initiation is described as the following. With

the magnetic topology of the reconnection region changing from the BP to the HFT, the HFT
reconnection starts to promote the flux rope rising with its slingshot effect and reconnection upward
outflow. As the HFT reconnection is developing, the effect of the HFT reconnection to the flux rope
rise gradually increases and eventually starts the slow rise phase/CME initiation. Afterwards, at
the earlier stage of the slow rise phase/CME initiation, the pre-eruptive flux rope rises slowly with
an increasing acceleration owing to the progressively enhanced HFT reconnection. With the HFT-
dominated slow rise going on, the flux rope later reaches a critical height where the torus instability
sets in. The onset of the instability marks the onset of the CME eruption in the physical sense, i.e.,
the flux rope being out of equilibrium. Then, at the later stage of the slow rise phase/CME initiation,



12 Xing et al.

the torus instability induces a stronger HFT reconnection, and they together promote the slow rise
of the flux rope. Finally, the impulsive acceleration of CME starts (the CME initiation ends) when
the magnetic reconnection coupled to the torus instability transforms from the HFT reconnection to
the fast magnetic reconnection, which is later than the eruption onset in the physical sense.

7. DISCUSSION

In previous studies, the slow rise motion during the initiation process was explained by a single
mechanism such as the eruption-trigger mechanism (Zhang et al. 2001; Zhang & Dere 2006) or the
weak magnetic reconnection before the onset of eruption-trigger mechanisms (Sterling et al. 2007;
Savcheva et al. 2012; Cheng et al. 2020, 2023). In contrast, our work presented here reveals that
the CME initiation is actually a multiple-physics coupled-process and its complete route is hardly
to be explained by the previous single mechanism. Firstly, the HFT reconnection triggers the CME
initiation and drives the CME progenitor to slowly rise in quasi-equilibrium. Secondly, after the torus
instability triggers the eruption, the less energetic destabilization and the HFT reconnection jointly
contribute to the slow rise/CME initiation for a while until the coupling of the destabilization and
the fast magnetic reconnection begins and induces the impulsive acceleration of the CME.
For the HFT reconnection, our simulation especially provides insight into the question how it

drives the flux rope during the initiation process. We find that both the Lorentz force and the
thermal pressure gradient force play important roles in the slow rise phase, at least in its earlier
stage. Quantitatively, for the flux rope field lines at the upper part of the HFT, the ratio of the
maximum of the thermal pressure gradient force to that of the Lorentz force is roughly 40% at t = 52
and 12% at t = 58 (Fig. 5c,d; the plasma β is roughly 0.01 at regions of the above-mentioned
maximum of the force). This result for the first time confirms the previous conjecture on the key role
of Lorentz force in causing the rise of pre-eruptive structures in the “tether-cutting reconnection”
model (Moore et al. 2001). However, the contribution of thermal pressure gradient force to the slow
rise is also not negligible, while this result could be further influenced by the plasma β in the HFT
reconnection region. This underscores the indispensability of a thermal-MHD simulation, beyond
the zero-β MHD simulations (Aulanier et al. 2010; Zuccarello et al. 2015), in the study of the CME
initiation.
Another important finding in our work is that the impulsive acceleration of CMEs does not immedi-

ately starts at the onset of the torus instability but commences at a later moment when the coupling
of the torus instability and the fast magnetic reconnection starts. Such a time delay may explain
why the critical decay indices estimated in observations (Zou et al. 2019; Cheng et al. 2020, 2023) are
sometimes larger than those derived theoretically (Kliem & Török 2006; Démoulin & Aulanier 2010),
as the observationally determined eruption onset time is probably later than the real onset time of
the torus instability in these works. It should be mentioned that a larger magnetic field strength in
observations compared to that in this simulation may lead to a larger kinematic acceleration, and
thus the above-mentioned time delay may become shorter in observations. In addition, such a time
delay indicates that the torus instability can only induce a relatively small acceleration at its begin-
ning, compared to that in the impulsive acceleration phase. Lastly, we emphasize that the finding on
the time delay benefits from the setup of our simulation, i.e., continuously imposing driving motion
after the eruption is triggered. Such a setup is distinguished from that in previous works (Aulanier
et al. 2010; Zuccarello et al. 2015), in latter of which the driving motion is switched off to relax
the system during the eruption. Our simulation avoids the extra relaxation effect in previous works,
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which does not occur in observations but could also contribute to the time delay in simulations and
pose a significant difficulty for analysis (as discussed in Appendix A.2).
Our simulation sheds light on the heating process of CME progenitors. However, it should be noted

that the thermodynamics in our simulation is a simplification of that of the Sun for the sake of clear
and concise results. First, the density and temperature profile of the atmosphere was simplified in
the simulation by omitting the lower atmosphere (from the photosphere to the transition region)
and setting a uniform coronal temperature. Second, some processes in flares, e.g., the radiative
cooling and the chromospheric evaporation, were not taken into account in the simulation. Even
so, we emphasize that these simplifications do not critically affect our result, i.e., the magnetic
reconnection takes place in the current sheet surrounding the flux rope and builds up and heats the
CME progenitor.
In summary, we successfully reproduce the complete early kinematics of a CME event with a

3D thermal-MHD simulation that is more physically realistic in this work. For the first time, we
explicitly disentangle the complex CME initiation process by systematically investigating how various
mechanisms play roles at different stages of the kinematics of a CME event.
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Figure 1. Distribution of Bz and imposed horizontal driving motions on the cell-center bottom surface.

The black (white) contours in the positive (negative) polarity are the contours of Bz, and the purple ones show the

PILs. The red (green) arrows in the positive (negative) polarity in the left panel show the shearing flow at t = 15, and

those in the right panel show the converging flow at t = 21. The arrow orientation denotes the direction of the motion,

and its length represents the magnitude of the speed (vh) . The scale of vh is shown at the bottom right corner of

each panel. All parameters are in dimensionless units.
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a
face-on flux rope

edge-on flux rope

sigmoid

b

Figure 2. Overview of the formation and eruption of the modelled flux rope. (a) Field lines and percentage

difference of synthetic EUV images at the AIA 335 Å at t = 58. The left, right, bottom images are the synthetic

images observed from x, y, and z directions, respectively. The translucent surface corresponds to cell-center bottom

surface and the box is used for integrating the emissivity. The white contours on the bottom surface represent those

of QSL footprints. The three side views of this panel are shown in Fig. 10c. (b) Evolution of magnetic field lines.

The sub-panel at t = 58 is the same as panel a. The cyan field line at t = 35 and the yellow field line at t = 45 are

tangent to the bottom surface at their dips, representing the field lines traced from the BP. The light blue and light

red field lines at t = 52 and the dark blue and dark red field lines at t = 58 exhibit those passing through the HFT.

The cell-center bottom surface shows the distribution of Bz. White (black) represents the positive (negative) polarity.

The scale of Bz is the same in each panel. An animation of panel b is available, showing the evolution of field lines

from t = 0 to t = 68 in the simulation. The duration of the animation is 23 s.
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a

b
t = 45 t = 45

t = 58 t = 58

Figure 3. Sketches of reconnections. (a) A sketch of the BP reconnection. The BP reconnection occurs between

two sheared arcades (symbolized by the red and the blue field lines) at two sides of the BP and forms a flux rope field

line (symbolized by the yellow field line) which is tangent to the bottom surface at its dip. The cell-center bottom

surface shows the distribution of Bz. The white contours show the profiles of the QSLs in the plane y = 0. The white

vertical plane in the right sub-panel is the plane y = 0. (b) A sketch of the HFT reconnection. The HFT reconnection

occurs between two sheared arcades (symbolized by the red and the blue field lines) at right and left sides of the HFT.

It forms a flux rope field line (symbolized by the yellow field line) whose dipped part is detached from the bottom

surface and at the upper part of the HFT, and a low-lying loop (symbolized by the green field line) at the lower part

of the HFT. The cell-center bottom surface, white contours, and the white vertical plane have the same meanings as

those in panel a.
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Figure 4. Kinematics of the CME progenitor and CME. (a)-(c) Kinematics of the CME progenitor and

CME during 35 ≤ t ≤ 68. In each sub-panel, the blue points show the measured or derived data and the black curve

shows the fitting curve of data with the cubic spline interpolation method. The orange dashed line represents the time

when the HFT first appears. The green and blue dashed lines mark the beginning and the end of the slow rise phase,

respectively. The light grey and dark grey regions show the earlier stage and the later stage of the slow rise phase,

respectively. The two black dashed lines and the yellow oblique-line-region between them mark the time range of the

torus instability onset. (d)-(f) Same as panels a-c but for the kinematics during 35 ≤ t ≤ 65.
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Figure 5. Evolutions of forces and velocity in the reconnection region. (a)-(e) Component of forces and

velocity in the z-direction in the plane y = 0 at t = 45, t = 52, and t = 58. They are in order as follows: velocity

(vz; panel a), net force (Fnet; panel b), Lorentz force (FLorentz; panel c), thermal pressure gradient force (Fther−pres;

panel d), and force related to the convection (Fconvect; panel e). Fnet is the sum of the z-components of Lorentz force,

thermal pressure gradient force, gravity, and viscous force. All of forces and velocity are in dimensionless units. The

green contours outline the QSLs, indicating that the magnetic topology of the reconnection region is a BP at t = 45

and an HFT at t = 52 and t = 58. (f) The maximum z-component of velocity (vz; in dimensionless unit) of the

reconnection outflow along the vertical slit through the origin during 38 ≤ t ≤ 58. The grey region shows the slow

rise phase before t = 58. (g) The black curve shows the growth rate of the maximum vz of the reconnection outflow

during 38 ≤ t ≤ 58, which is derived by taking the derivative of the maximum vz with respect to time. The red dashed

curve represents the fitting curve of the flux rope acceleration before t = 58, which is the same as that in Fig. 4f but

numerically scaled down by a factor of 290. The grey region has the same meaning as that in panel f.
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Figure 6. Component of forces and velocity in the z-direction in the plane y = 0 at t = 58. They are

in order as follows: Lorentz force (FLorentz), magnetic tension force (Fmag−tens), magnetic pressure gradient force

(Fmag−pres), thermal pressure gradient force (Fther−pres), net force (Fnet), velocity (vz), gravity (Fgrav), viscous force

(Fvisc), and force related to the convection (Fconvect). Fnet is the sum of FLorentz, Fther−pres, Fgrav, and Fvisc. Here

the Fmag−tens (Fmag−pres) is derived by first decomposing B · ∇B (−∇(B2/2)) to the normal direction of magnetic

field and then further decomposing to the z-direction, given that the tangential component does not contribute to the

acceleration. All of forces and velocity are in dimensionless units. The green contours represent the profiles of QSLs

in the half panel of x ≤ 0. See Appendix B for more details for locating the flux rope boundary.
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Figure 7. Some parameters related to force analysis on the plane y = 0 at t = 58. They are in order

as follows: z-component of magnetic tension force (Fmag−tens), z-component of magnetic pressure gradient force

(Fmag−pres), negative divergence of velocity (−div(v)), negative partial derivative of x-component of velocity to x

(−(vx)
′

x), mass density (rho), and thermal pressure (p). All parameters are in dimensionless units. The positive

−div(v) and −(vx)
′

x at the two flanks of the flux rope bottom clearly show the compression caused by the reconnection

inflow. The green curves represent contours of the QSLs.
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Figure 8. Evolutions of HFT footprint and HFT reconnection electric field. (a)-(c) Squashing degree logQ

on the cell-center bottom surface at t = 52, t = 55, and t = 58. The field of view is marked by the red dashed box in

panel d. (d)-(e) Squashing degree logQ on the cell-center bottom surface at t = 58 and t = 63. The two hook-shape

QSL footprints around (X,Y ) = (1, 2) and (X,Y ) = (−1,−2) mark the boundaries of two footpoints of the flux rope,

respectively. At the ends of straight parts of QSL footprints (around (X,Y ) = (−2, 2) and (X,Y ) = (2,−2) in panel

e), the curved QSL footprints demonstrate the rapid change in the connectivity of the field lines anchored there as a

result of the driving motion. (f) Time-slice plot of the normalized logQ. The slit is denoted by the orange dashed line

in panels a-c. At each moment, logQ is normalized by the maximum logQ along the slit, and the red symbol marks

the location of the local maximum of normalized logQ which corresponds to the HFT footprint. (g) Reconnection

electric field E during 46 ≤ t ≤ 68. The reconnection electric field during 46 ≤ t ≤ 51 is derived from the orange slit

in panels a-c; the reconnection electric field during 52 ≤ t ≤ 68 is averaged from the electric fields derived from four

slits (represented by the orange and the pink dashed lines in panels a-c). The vertical dashed lines, light/dark grey

regions, and yellow oblique-line-region have the same meanings as those in Fig. 4. (h) Same as panel g but for the

reconnection electric field E during 46 ≤ t ≤ 65.
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Figure 9. Current structures in the reconnection region during 61 ≤ t ≤ 68. Each sub-panel shows the

distribution of dimensionless J/B on the plane y = 0. The colorbar for J/B in all sub-panels is displayed at the upper

right corner. The red contours in first sub-panel show the outlines of QSLs at t = 61. The white arrows mark the

forming current sheet in the reconnection region.
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a

b c

t = 45 t = 58 

Figure 10. Magnetic field lines and synthetic EUV images at the AIA 335 Å. (a) Same as Fig. 2a but for

t = 45. (b) Three side views of field lines and percentage difference images at t = 45. (c) Same as the panel b but for

t = 58.
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Figure 12. Physical processes as disclosed by the kinematics of the CME progenitor and CME. The

yellow curve represents the acceleration of the CME (progenitor). The red, green, purple, blue curves show the four

accelerations contributed by the torus instability, the HFT reconnection, the fast magnetic reconnection, and the

driving motion, respectively. The onset times of the HFT, the slow rise, the torus instability, and the impulsive

acceleration (abbreviated as acc.) of the CME are displayed by four dashed lines and labeled as tHFT-formation,

tslow-rise-beginning, tonset-TI, and timpulsive-acc.-beginning, respectively. In our simulation, these four onset times correspond

to t = 46, t = 52, a moment during the period 59 ≤ t < 63, and t = 65, respectively. The light grey and dark grey

regions show the earlier stage and the later stage of the slow rise phase/CME initiation process, respectively. The red

curve is dashed during a part of the slow rise phase and the impulsive acceleration phase, indicating that the dominant

mechanism for the acceleration is unknown whether it is torus instability or magnetic reconnection in these periods.
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APPENDIX

A. ANALYSIS OF ONSET TIME OF TORUS INSTABILITY

A.1. Control Simulations

In this work, we perform three control simulations to help us determine the onset time of the torus
instability in “Simulation De”. In the following, we first introduce the numerical setups in these
three control simulations.
The first control simulation, named as “Simulation Half-driven-eruption” (abbreviated as “Simu-

lation He”) is composed of two phases: the shearing phase (0 ≤ t ≤ 18) and the converging phase
(18 < t ≤ 70). The setups in “Simulation He” are the same as those in “Simulation De”, except
that the amplitude of the converging flow is gradually switched off to half during 59 < t ≤ 60 and
then kept at half after that (60 < t ≤ 70) by modifying the function of γ(t) in Equation 10 in these
periods:

γ(t) =


−1

4
tanh[6.0(t− 59.5)] +

3

4
59 < t ≤ 60

1

2
60 < t ≤ 70,

(A1)

The second control simulation, named as “Simulation Undriven-eruption” (abbreviated as “Sim-
ulation Ue”) is composed of three phases: the shearing phase (0 ≤ t ≤ 18), the converging phase
(18 < t ≤ 60), and the relaxation phase (60 < t ≤ 71). Before and at t = 59, the setups of “Simu-
lation Ue” are the same as those of “Simulation De”. After t = 59, the converging flow is gradually
switched off to zero during 59 < t ≤ 60, and then the velocity on the cell-center bottom surface is
fixed to zero during the relaxation phase (60 < t ≤ 71), also by modifying the function of γ(t) in
Equation 10 in these periods:

γ(t) =

−1

2
tanh[6.0(t− 59.5)] +

1

2
59 < t ≤ 60

0 60 < t ≤ 71.
(A2)

Correspondingly, during 59 < t ≤ 71, the dissipation term in the Equation 3 in the layer k = 1 is
modified into:

∂B

∂t
+∇ · (vB −Bv + ψI) =

η(
∂2

∂x2
+

∂2

∂y2
)B 59 < t ≤ 60

0 60 < t ≤ 71.

(A3)

During 59 < t ≤ 60, the setup of η is the same as that during 18 < t ≤ 59. During the relaxation
phase (60 < t ≤ 71), η is set to zero in the layer k = 1 and set to be uniform (η = 4 × 10−4; in
dimensionless unit) in the whole region except the layer k = 1. All other setups during 59 < t ≤ 71
are the same as those before t = 59.
The third control simulation, named as “Simulation No-eruption” (abbreviated as “Simulation

Ne”) is also composed of three phases: the shearing phase (0 ≤ t ≤ 18), the converging phase
(18 < t ≤ 59), and the relaxation phase (59 < t ≤ 72). The setups in three phases of “Simulation
Ne” are the same as those in three phases of “Simulation Ue”, respectively, except that the converging
motion is switched off a little earlier, during 58 < t ≤ 59.
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A.2. Kinematics of CME Progenitors/CMEs in Control Simulations

The kinematics of CME progenitors and CMEs in these three control simulations is estimated by a
method same as that applied to “Simulation De”. For these three simulations, the point, from which
the overlying field line is traced, is the same as that used in “Simulation De”. The velocity at this
fixed point is extremely small, very close to or equal to zero, in all phases of all three simulations.
The kinematics of CME progenitors and CMEs in control simulations and “Simulation De” is

shown in Fig. S1a-c. We note that, for three control simulations, the decreasing acceleration or even
negative acceleration in a period shortly after switching off the driving motion (e.g., 59 ≤ t < 61 in
“Simulation He”, 59 ≤ t < 61 in “Simulation Ue”, 58 ≤ t < 62 in “Simulation Ne”) could be due to
the viscous and resistive effects, as well as the relative relaxations of magnetic tension and pressure
around the tipping point of the equilibrium curve (Démoulin & Aulanier 2010).

A.3. Onset Time of Torus Instability

For all four simulations, in the period 57 ≤ t ≤ 64, the flux rope is basically along the y-direction
(Fig. S2; taking examples at t = 57 and t = 64 in “Simulation De”). Therefore, the magnetic
field at the intersection of the flux rope axis and the plane y = 0 is considered in the y-direction
in this period, and the intersection is determined with the contour of Bx = 0 and the contour of
Bz = 0 in the plane y = 0. The axis field line is then traced from the intersection. The decay index,
n = −d(lnBt)/d(lnh), describes the decay rate of the component (Bt) of the potential field, which is
transverse and perpendicular to the flux rope, with the height (h). At each analysed moment, the
potential field is extrapolated by the Green’s function method (performed by Solar Software (SSW;
Freeland & Handy, 2012) package code “optimization fff.pro”) with Bz at the cell-center bottom
surface as the input. During 57 ≤ t ≤ 64, the component Bt(h) is defined as the absolute value of
Bx of the potential field at (0, 0, h), considering the flux rope axis is along the y-direction and the
horizontal coordinate of its apex is around (0, 0).
We first analyze the kinematic evolution in “Simulation Ue” (see red curves in Fig. S1a-c). We

consider that the onset time of the CME eruption in the physical sense (i.e., the time when the stable
equilibria of the flux rope is broken) is between t = 59 and t = 64 for the following two reasons: (a)
The CME progenitor fails to erupt in “Simulation Ne”, in which all setups are the same as those in
“Simulation Ue” but the converging motion is switched off during 58 < t ≤ 59. This means that
the CME in “Simulation Ue” erupts after t = 58. The earliest limit of its eruption onset time is
therefore set at t = 59. (b) The acceleration in “Simulation Ue” changes from negative to positive
at t ∼ 64 and increases continuously after that (Fig. S1c). This indicates that the flux rope is out
of equilibrium after that, and thus the latest limit of the eruption onset time is set at t = 64. For
“Simulation Ue”, the decay index of the potential field at the apex of the flux rope axis is 1.5227 at
t = 59 and 1.6239 at t = 64, very close to the threshold of 1.5 for the occurrence of torus instability
(Kliem & Török 2006), indicating that the CME eruption is highly probably triggered by the torus
instability. The HFT reconnection that starts earlier (t = 46) is considered unable to lead to the
eruption as the eruption fails in the presence of HFT in “Simulation Ne” (Aulanier et al. 2010).
Next, we analyze the kinematic evolution in “Simulation De”. We consider that the (pre-)eruptive

flux rope in “Simulation De” is quite similar to that in “Simulation Ue” in the period 59 ≤ t ≤ 64,
as the height of flux rope axis apex in “Simulation Ue” is only 7.6% lower than that in “Simulation
De” at t = 64. Therefore, if the torus instability also sets in “Simulation De”, the critical decay
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index for the torus instability onset should be in a range quite similar to 1.5227 ≤ n ≤ 1.6239. In
the following, we take the range 1.5227 ≤ n ≤ 1.6239 for the critical decay index in “Simulation
De”. In Fig. S1d, it is clear that the height of the flux rope axis apex in “Simulation De” is already
higher than the height of the upper limit of the critical decay index at t = 63, indicating that the
torus instability could set in “Simulation De” and that its onset time should be before t = 63. The
earliest onset time of the torus instability in “Simulation De” is still t = 59, as the apex of the flux
rope axis reaches the height of the lower limit of critical decay index at this moment. Therefore, we
summarize that the torus instability sets in “Simulation De” during 59 ≤ t < 63.
We note that it is not an accident that the time range of the torus instability onset in “Simulation

De” is earlier than that in “Simulation Ue”. In the period 60 < t ≤ 64, the driving motion becomes
stronger and stronger from “Simulation Ue” to “Simulation He” to “Simulation De”, with the max-
imum speed of the driving motion varying from 0 to 0.08 to 0.16 (in dimensionless unit). In Fig.
S1e,f, we show that, on the one hand, for these three simulations, the flux rope in the simulation
with a stronger driving motion could rise to a higher altitude at the same moment (taking examples
at t = 63 (see panel e) and at t = 64 (see panel f)). On the other hand, in comparison among the
three simulations, the one with a stronger driving motion has a higher height corresponding to the
same critical decay index at the same moment (see panels e and f). However, it is clear that such
a difference in the height of the flux rope axis is much larger than the difference in the height of
a certain decay index, when comparing each two of these three simulations. This suggests that in
comparison among different simulations, the stronger driving motion imposed, the earlier the flux
rope axis reaches the height of the critical decay index and thus the earlier the torus instability starts,
if regardless of the change in the critical decay index itself.

B. FLUX ROPE BOUNDARY

The flux rope boundary and the reconnection region are identified with the squashing degree Q
which measures the mapping of the field lines. The squashing degree Q is derived by (Titov et al.
2002):

Q =
(∂X
∂x

)2 + (∂X
∂y

)2 + (∂Y
∂x
)2 + (∂Y

∂y
)2

|∂X
∂x

∂Y
∂y

− ∂X
∂y

∂Y
∂x
|

(B4)

with the code FastQSL (Zhang et al. 2022), where (x, y) and (X, Y ) are coordinates of two footpoints
of a field line.
The QSLs refer to the locations where logQ is much larger than 2 (Titov et al. 2002), and here we

define the QSLs as the region where logQ ≥ 3. In the following we take the flux rope at t = 58 in
“Simulation De” as an example to explain how we determine the flux rope boundary. In the plane
y = 0, the bottom and side boundaries of the flux rope can be exactly determined by the QSLs,
while the top boundary is blurred as the QSLs are not closed there (Fig. S3). We determine the
top boundary qualitatively at the top edge of the strong downward Lorentz force region, i.e., the
apex of the flux rope is roughly at z = 3.3 (in dimensionless unit; see Fig. 6a). This determination
is reasonable for the following reasons. First, as shown in Fig. S3, the weakly twisted field lines
traced from the downward Lorentz force region (yellow field lines) are mostly anchored in the regions
partially surrounded by the QSL footprints. They compose a flux rope configuration together with
the highly twisted field lines traced from the upward Lorentz force region (green field lines). Second,
the tops of the high mass density region (represented by the gravity in Fig. 6c) and of the high
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current density region (represented by the Ohmic heating rate in Fig. 11) are also around z = 3.3 in
the plane y = 0, also indicating that the flux rope apex is around z = 3.3.

C. ESTIMATING THE RECONNECTION ELECTRIC FIELD

We estimate the reconnection electric field with a method commonly used in observations (Qiu et al.
2002). In brief, the reconnection electric field (E) is derived by E = vQBz, where vQ is the separation
speed of the QSL footprint in the direction perpendicular to the PIL and Bz is the z-component of
the magnetic field at the QSL footprint. This estimation method is based on a 2D flare model but is
considered still applicable to a 3D situation (Forbes & Lin 2000). We refer readers to the previous
paper (Qiu et al. 2002) for more details of this method.
In Fig. 8a-e, we show the separation motion of the QSL footprint on the cell-center bottom surface.

To estimate the separation motion speed, we set a slit (represented by the orange dashed lines in
Fig. 8a-c) on this surface, starting from the origin and along the direction perpendicular to the PIL.
The time-slice plot of the normalized logQ (Fig. 8f), where the logQ on the slit is normalized by
its maximum at each moment, exhibits how the QSL footprint separates from the PIL. The center
of the QSL footprint, where the normalized logQ reaches its local maximum, is marked by the red
symbol at each moment. The phenomenon that the QSL footprint stays on the PIL before and at
t = 45 confirms that the magnetic topology of the reconnection region is a BP in this period. The
separation of QSL footprint starts at t = 46, marking the first appearance of HFT at this moment.
The separation speed (vQ) is derived to be the derivative of the distance from the origin to the QSL
footprint with time. Finally, the electric field of the HFT reconnection is derived by multiplying
the separation speed with the local Bz. The electric field during 46 ≤ t ≤ 51 (see Fig. 8g,h) is
represented by that derived from the orange slit, considering the reconnection still occurs in BP
rather than HFT in many other places in this period. The electric field during 52 ≤ t ≤ 68 (also
see Fig. 8g,h) is represented by the average of the electric fields derived from the orange slit and
three other slits (represented by the pink dashed lines in Fig. 8a-c; all of them crossing through
HFT footprints rather than BP footprints since t = 52). The aim of the multiple measurements and
averaging is to better show the evolution of the electric field in the entire HFT.

D. SYNTHETIC EUV IMAGES OF THE CME PROGENITOR

We synthesize the EUV images at the AIA 335 Å as observed from three side views through in-
tegrating the emissivity along each direction under the optically thin emission assumption. The
passband is selected at 335 Å to best demonstrate the structure of the hot CME progenitor. The
emissivity is derived from the temperature and the number density of electron (which are dimension-
alized with the dimensionless units; the number density is derived under the assumption of a fully
ionized ideal gas with a hydrogen-helium abundance ratio of 10:1) with the AIA response function
(performed by SSW package code “aia get response.pro”), and the integration is performed in a box
where −3.2 ≤ x ≤ 3.2, −4.9 ≤ y ≤ 4.9, and 0.015 ≤ z ≤ 3.86 (in dimensionless unit). To better
show the flux rope structure, we show the percentage difference intensity rather than the original
synthetic intensity, which is derived by:

Di =
Ii − I0
I0

, (D5)

where Di and Ii are the percentage difference intensity and the original synthetic intensity at t = ti,
respectively, and I0 is the original synthetic intensity at t = 0. We note that the percentage difference
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intensity in the flux rope, although sometimes negative, is still larger than that of its surrounding,
clearly showing the presence of the hot CME progenitor.
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Figure S1. Kinematics of CME progenitors and CMEs in four simulations and estimation of the

onset time of the torus instability in “Simulation De”. (a)-(c) Kinematics of CME progenitors and CMEs

in “Simulation De” (purple curves), “Simulation He” (green curves), “Simulation Ue” (red curves), and “Simulation

Ne” (blue curves). In panel c, the vertical and horizontal black dashed lines mark that the flux rope acceleration in

“Simulation Ue” is close to zero at t = 64. (d) The solid curve exhibits the height of the flux rope axis apex during

57 ≤ t ≤ 64 in “Simulation De”. The dotted-dashed curve (long-dashed curve) represents the evolution of the height

(h) during 57 ≤ t ≤ 64 in “Simulation De”, the height which meets the condition that the decay index at (0, 0, h) equals

1.6239 (1.5227) at each moment. The yellow region marks the range for the critical height of the torus instability onset

during 57 ≤ t ≤ 64 in “Simulation De”. (e) The solid curve shows the evolution of the height of the flux rope axis

apex at t = 63, from “Simulation (abbreviated as Simul.) Ue” to “Simulation He” to “Simulation De”. The dashed

curve shows the evolution of the height (h), which meets the condition that the decay index at (0, 0, h) equals 1.6239

at t = 63, from “Simulation Ue” to “Simulation He” to “Simulation De”. (f) Same as panel e but for those at t = 64.
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Figure S2. Top views of magnetic field lines in Fig. 2b. The left panel is at t = 57 and the right panel is at

t = 64. The vertical direction is the y-direction.
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Figure S3. Magnetic field lines in the flux rope at t = 58. (a) Forces on the plane y = 0 and field lines in

the flux rope. The green (yellow) shows the highly (weakly) twisted field lines. In the plane y = 0, the left half panel

shows the z-component of the thermal pressure gradient force and the right half panel shows the z-component of the

Lorentz force. The colors and the scales of the forces are the same as those in Fig. 6. The cell-center bottom surface

shows the distribution of Bz. The white contours on the bottom surface and the vertical plane represent the contours

of QSLs. (b) Top view of panel a. (c) Face-on view of panel a.
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